Just a decade ago, it would have been unthinkable to use
data to make everyday decisions. Now, such "predictive analytics" are
the norm: Simply type a query into Google and it magically suggests what you
were searching for. How about those stories you read this morning on your
Facebook news-feed? That's predictive analytics at work again.
A survey by management consulting, technology
services and outsourcing company Accenture found the use of predictive
analytics technologies has tripled since 2009. That number isn't surprising
when you recognize all the ways in which we use predictive analytics on a daily
basis.
Not a crystal ball, but it works like one
Consider Amazon, the ubiquitous one-click Internet retailer.
By plugging into an algorithm such user data as links clicked, wish list items,
number of visits to the site and previously purchased items, the retailer can
predict buyer activity accurately enough to send items to its warehouses before
merchandise has even been purchased.
Amazon is so confident in its predictive algorithms, it'll
put money on them. For example, if there's a large demand for flip-flops in
Florida, the local fulfillment centers might fill up with flip-flops before
orders are even placed, allowing for shorter delivery time when a customer
finally clicks the purchase button. According to an article by Lance Ulanoff,
chief correspondent and editor-at-large of Mashable, it's all a part of making
the shipping process more efficient for the customer, and less costly for
Amazon.
Fantasy sports take a similar approach. There
are 41.5 million people managing fantasy sports teams, according to
the Fantasy Sports Trade Association. The selection of a
player for a fantasy team depends on a number of different factors.
Participants take into consideration things like historical performance,
coaches and a player's current team. Selecting a player based on one variable
just doesn't give an accurate picture of that player's value.
Consider when quarterback Alex Smith left the San Francisco
49ers and joined the Kansas City Chiefs. Smith's productivity (points per
game per year) jumped nearly 35 percent — and analytics tells us that this
probably isn't just good luck. It could be because Kansas City uses Andy Reid's
pass-first West Coast offense that better jives with Smith's abilities. Or, it
could even be because Smith operated better in Kansas City's climate.
Regardless of why, it's obvious that there are multiple
variables, like team strategies and location, which affect
performance. Using predictive analytics offers a more robust model
that takes multiple variables into account. Instead of leaving it to
intuition or chance, an algorithm pulls together dozens of factors to
identify which players will be most successful in a given situation.
Predicting health?
This data analysis trend is also present in industries like
health care. Looking at analytics helps caregivers treat the patient
individually — for example, predictive algorithms can help show which patients
are at risk for rehospitalization, which patients could benefit from another
care episode (services that treat a clinical condition or procedure), and which
would benefit from hospice care. My own company, Medalogix, helped reduce
readmission rates for one home health care agency by nearly 36 percent in
one year with the use of our predictive analytics software. Patients receive
the most personalized health care services, which increases care outcomes and
quality, while providers reduce expenses.
Another leg on the stool
Predictive analytics, in all of its uses, should be used as
a resource to better decision-making.
Consider the decision-making process as a three-legged
stool. One leg represents the education and experience that goes into
decision-making; the second leg is built upon the instinctual feelings
considered throughout the process. Together, those two dimensions of
traditional decision-making support the stool, but still don't keep it from
falling over. Analytics is the third dimension — another leg to make it sturdier.
Having more information makes for more informed, stronger decisions.
While seemingly complex, predictive analytics makes lives
simpler by modeling data into useful insights. By looking at how predictive
analytics function in our lives — like speeding up online deliveries or curbing
hospital read missions — the concept quickly becomes more accessible and less
intimidating. Adding additional dimensions into decision-making through
analytics creates a more robust and complete picture, allowing people and
businesses to make the most informed decisions possible.

No comments:
Post a Comment